Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake.

نویسندگان

  • Jörg S Deutzmann
  • Bernhard Schink
چکیده

Anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow 14CO2 formation from 14CH4 in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas 14CO2 formation without and with sulfate addition was negligible, addition of nitrate increased 14CO2 formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of the pmoA and 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments.

The activity and community structure of aerobic methanotrophic communities were investigated at methane seeps (pockmarks) in the littoral and profundal zones of an oligotrophic freshwater lake (Lake Constance, Germany). Measurements of potential methane oxidation rates showed that sediments inside littoral pockmarks are hot spots of methane oxidation. Potential methane oxidation rates at littor...

متن کامل

Aerobic and Anaerobic Oxidation of Methane in Sediments of Lake Constance

13 Introduction 13 Materials and Methods 15 Results 19 Discussion 23 Acknowledgements 29 Chapter 3 Activity and Diversity of Methanotrophic Bacteria at Methane Seeps in Eastern Lake Constance Sediments 30 Abstract 30 Introduction 30 Materials and methods 31 Results 35 Discussion 42 Acknowledgements 4530 Introduction 30 Materials and methods 31 Results 35 Discussion 42 Acknowledgements 45

متن کامل

Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We ...

متن کامل

Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica

We found unprecedentedly high abundances of microbially produced CH4 in the anoxic deep waters of Lake Untersee, an oligotrophic, perennially ice-covered Antarctic freshwater lake. The maximum CH4 concentration (approaching 21.8 6 1.4 mmol L21) is one of the highest observed so far in a natural aquatic ecosystem. Although surficial lake sediments are the predominant source of CH4 in Lake Unters...

متن کامل

Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a Low-sulfate, Iron-rich Freshwater Sediment

ANaerobic MEthanotrophic (ANME) archaea remove the greenhouse gas methane from anoxic environments and diminish its flux to the atmosphere. High methane removal efficiencies are well documented in marine environments, whereas anaerobic oxidation of methane (AOM) was only recently indicated as an important methane sink in freshwater systems. Freshwater AOM-mediating microorganisms lack taxonomic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 13  شماره 

صفحات  -

تاریخ انتشار 2011